Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Commun Biol ; 6(1): 691, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402774

RESUMEN

Skull bone mineral density (SK-BMD) provides a suitable trait for the discovery of key genes in bone biology, particularly to intramembranous ossification, not captured at other skeletal sites. We perform a genome-wide association meta-analysis (n ~ 43,800) of SK-BMD, identifying 59 loci, collectively explaining 12.5% of the trait variance. Association signals cluster within gene-sets involved in skeletal development and osteoporosis. Among the four novel loci (ZIC1, PRKAR1A, AZIN1/ATP6V1C1, GLRX3), there are factors implicated in intramembranous ossification and as we show, inherent to craniosynostosis processes. Functional follow-up in zebrafish confirms the importance of ZIC1 on cranial suture patterning. Likewise, we observe abnormal cranial bone initiation that culminates in ectopic sutures and reduced BMD in mosaic atp6v1c1 knockouts. Mosaic prkar1a knockouts present asymmetric bone growth and, conversely, elevated BMD. In light of this evidence linking SK-BMD loci to craniofacial abnormalities, our study provides new insight into the pathophysiology, diagnosis and treatment of skeletal diseases.


Asunto(s)
Densidad Ósea , Craneosinostosis , Animales , Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Pez Cebra/genética , Cráneo , Craneosinostosis/genética , Factores de Transcripción/genética
2.
Exp Biol Med (Maywood) ; 245(12): 1029-1038, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32363923

RESUMEN

IMPACT STATEMENT: The diagnosis of overtraining syndrome and overreaching poses a great challenge. Military training aims at improving the physical performance of the conscripts, but an excessive training load could also lead to overreaching. This study of Finnish conscripts provides new insights into the pathophysiology of overreaching and overtraining through amino acids concentrations. In addition to confirming the possible use of plasma glutamine/glutamate concentration to indicate and predict overreaching, we made a novel finding, i.e. low alanine and arginine concentrations might have a role in performance decrement and fatigue related to overreaching. Moreover, this study is the first to show the possible association between amino acids with putative neuronal properties and overreaching. Thus, the present findings might help to detect and prevent overreaching and offer a reliable diagnostic approach. In order to avoid overreaching, military training should be planned more periodically and individually, especially during the first four weeks of military service.


Asunto(s)
Aminoácidos/sangre , Aminoácidos/metabolismo , Fatiga/sangre , Fatiga/metabolismo , Plasma/metabolismo , Educación/métodos , Fatiga/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Personal Militar , Oxígeno/metabolismo
3.
Hum Mol Genet ; 28(19): 3327-3338, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504550

RESUMEN

Although hundreds of genome-wide association studies-implicated loci have been reported for adult obesity-related traits, less is known about the genetics specific for early-onset obesity and with only a few studies conducted in non-European populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a trans-ancestral meta-analysis of 30 studies consisting of up to 13 005 cases (≥95th percentile of body mass index (BMI) achieved 2-18 years old) and 15 599 controls (consistently <50th percentile of BMI) of European, African, North/South American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1888 cases and 4689 controls from seven cohorts of European and North/South American ancestry. In addition to observing 18 previously implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest gene, METTL15). The variant was nominally associated with only the European subgroup analysis but had a consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to narrow down the causative variant at four known loci to fewer than 10 single nucleotide polymorphisms (SNPs) (FAIM2, GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional pediatric obesity locus and further fine-map existing loci.


Asunto(s)
Mapeo Cromosómico/métodos , Estudio de Asociación del Genoma Completo/métodos , Obesidad Infantil/genética , Polimorfismo de Nucleótido Simple , Tumor de Wilms/genética , Teorema de Bayes , Estudios de Casos y Controles , Niño , Femenino , Sitios Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino
4.
Nat Genet ; 51(5): 804-814, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043758

RESUMEN

Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.


Asunto(s)
Peso al Nacer/genética , Adulto , Presión Sanguínea/genética , Estatura/genética , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Femenino , Desarrollo Fetal/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Cardiopatías/etiología , Cardiopatías/genética , Humanos , Recién Nacido , Masculino , Herencia Materna/genética , Intercambio Materno-Fetal/genética , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/genética , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Embarazo , Factores de Riesgo
5.
Hum Mol Genet ; 27(17): 3113-3127, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29931343

RESUMEN

Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5-18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-wide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Biomarcadores/análisis , Caries Dental/genética , Dentición Permanente , Estudio de Asociación del Genoma Completo/métodos , Fosfoproteínas/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Masculino , Fenotipo
6.
Am J Hum Genet ; 102(1): 88-102, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29304378

RESUMEN

Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.


Asunto(s)
Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Adolescente , Factores de Edad , Animales , Niño , Preescolar , Sitios Genéticos , Humanos , Lactante , Recién Nacido , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Análisis de Regresión
7.
J Sports Sci ; 35(23): 2342-2349, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27966392

RESUMEN

We investigated how cytokines are implicated with overtraining syndrome (OTS) in athletes during a prolonged period of recovery. Plasma IL-6, IL-10, TNF-α, IL-1ß, adipokine leptin, and insulin like growth factor-1 (IGF-1) concentrations were measured in overtrained (OA: 5 men, 2 women) and healthy control athletes (CA: 5 men, 5 women) before and after exercise to volitional exhaustion. Measurements were conducted at baseline and after 6 and 12 months. Inflammatory cytokines did not differ between groups at rest. However, resting leptin concentration was lower in OA than CA at every measurement (P < 0.050) but was not affected by acute exercise. Although IL-6 and TNF-α concentrations increased with exercise in both groups (P < 0.050), pro-inflammatory IL-1ß concentration increased only in OA (P < 0.050) and anti-inflammatory IL-10 was greater in CA (P < 0.001). In OA, exercise-related IL-6 and TNF-α induction was enhanced during the follow-up (P < 0.050). IGF-1 decreased with exercise in OA (P < 0.050); however, no differences in resting IGF-1 were observed. In conclusion, low leptin level at rest and a pro-inflammatory cytokine response to acute exercise may reflect a chronic maladaptation state in overtrained athletes. In contrast, the accentuation of IL-6 and TNF-α responses to acute exercise seemed to associate with the progression of recovery from overtraining.


Asunto(s)
Citocinas/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leptina/sangre , Acondicionamiento Físico Humano/efectos adversos , Adulto , Distribución de la Grasa Corporal , Índice de Masa Corporal , Estudios de Casos y Controles , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Interleucina-10/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , Masculino , Consumo de Oxígeno/fisiología , Síndrome , Factor de Necrosis Tumoral alfa/sangre
8.
Nature ; 538(7624): 248-252, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27680694

RESUMEN

Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P < 5 × 10-8). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (Rg = -0.22, P = 5.5 × 10-13), T2D (Rg = -0.27, P = 1.1 × 10-6) and coronary artery disease (Rg = -0.30, P = 6.5 × 10-9). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P = 1.9 × 10-4). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated.


Asunto(s)
Envejecimiento/genética , Peso al Nacer/genética , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/genética , Feto/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Adulto , Antropometría , Presión Sanguínea/genética , Ensamble y Desensamble de Cromatina , Estudios de Cohortes , Conjuntos de Datos como Asunto , Femenino , Sitios Genéticos/genética , Variación Genética/genética , Impresión Genómica/genética , Genotipo , Glucosa/metabolismo , Glucógeno/biosíntesis , Humanos , Insulina/metabolismo , Masculino , Fenotipo , Transducción de Señal
9.
Hum Mol Genet ; 25(2): 389-403, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26604143

RESUMEN

A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.


Asunto(s)
Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Obesidad/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Niño , Preescolar , Femenino , Sitios Genéticos , Humanos , Masculino , Riesgo , Población Blanca/genética , Adulto Joven
10.
Hum Mol Genet ; 24(4): 1155-68, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25281659

RESUMEN

Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; ß = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Estatura/genética , Estudios de Asociación Genética , Variación Genética , Proteínas de la Membrana/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Factores de Edad , Alelos , Biología Computacional , Bases de Datos Genéticas , Genotipo , Humanos , Recién Nacido , Proteínas de la Membrana/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...